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Processor Xeon Gold 6126 Tesla V100 Vector Engine 10B

FLOPS (Double) 998.4 GFLOPS 7.8 TFLOPS 2.15 TFLOPS

Memory bandwidth 128 GB/s 900 GB/s 1.2 TB/s

# of cores 12 2560 8

ML library scikit-learn RAPIDS Frovedis

 VE achieves the shortest execution time among these 
processors in large codebook sizes.
 The demand B/F is high.
 The execution time of GPU has a large overhead except for the 

k-means calculation. 

 The execution times of GPU and VE do not change as the 
data size increases, whereas that of Xeon increases.
 GPU and VE do not make the most of their processing and vector 

processing performance within the range of this data sizes.

 This workflow consists of the SOM training, and the k-means 
clustering and visualization parts.

1. SOM training
 A 2-D map is created (input vector is 9-D).

1. Codebook is initialized by principal component analysis (PCA).
2. The best match unit (BMU) is searched by the k-nearest neighbor 

algorithm.
3. BMU and its neighbors are updated.
4. A 2-D map is output.

2. K-means clustering and visualization parts
 Materials are classified based on similar properties.

1. A SOM training result is clustered by the k-means algorithm.
2. The clustering result is visualized.

 This workflow is implemented by SOMPY. 
 SOMPY is implemented by scikit-learn.

 The materials are classified based on their 
thermophysical properties.

 The visualized result makes understanding material 
properties easy.

 Future work
 The SOM training part in the classification method is implemented 

and evaluated on multiple platforms.
 The workflow is accelerated by offloading k-NN considering data 

set size to the suitable processor.

Motivation
 Conventional liquid fluid material development
 It is necessary to consume a lot of time in developing 

new materials by experimental trials and errors.
 Researchers rely on intuition to develop new materials.

 Problem on MI: Computing cost
 A huge amount of computing resource is requested to 

analyze the properties of a large number of materials.
 The computation time increases by the growth of the 

number of material combinations.

Platforms Performance

 The k-means clustering algorithm on multiple platforms 
is evaluated.
 The execution time does not include that of the visualization 

part because this part is negligible.

 Large data sets are created in the experiment.
 The number of material: 1024~16384
 The number of dimension: 9

Experimental environment

A workflow of clustering liquid fluid materials[1]

Performance evaluation

Conclusions and future work
 Conclusions
 The k-means clustering and visualization parts are evaluated 

by multiple platforms.
 VE achieves the highest performance among these 

processors.
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 New Approach: Material Informatics (MI)
 New materials are discovered by informatics approaches. 

 Candidates by simulation and experiment are analyzed 
with machine learning (ML).

Evaluate clustering for MI using various accelerators
 GPU, vector processor, and so on


