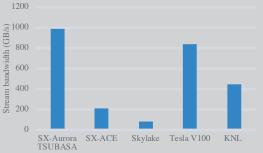

Early Evaluation of a New Vector Processor 5X-

Kazuhiko Komatsu¹⁾, Shintaro Momose¹⁾²⁾, Yoko Isobe¹⁾²⁾, Masayuki Sato¹⁾, Akihiro Musa¹⁾²⁾, Hiroaki Kobayashi¹⁾

1) Tohoku University 2) NEC Corporation

NEC

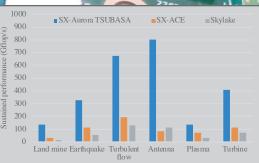
Overview of SX-Aurora TSUBASA



Data transfers easily become bottleneck

Performance Evaluation

· 8


- Maximum AVX length

SX-Aurora TSUBASA achieves 4.5, 11.3, 1.2, and 2.2 times higher sustained memory bandwidth than those of SX-ACE, Xeon 6126, Tesla V100, Xeon Phi KNL 7290, respectively. 350 250 200 150 0 SX-Aurora SX-ACE Skylake Tesla V100 KNL TSUBASA

- NEC C/C++ compiler 1.2.0

SX-Aurora TSUBASA achieves 2.3, 5.4, 1.8, and 2.0 times higher performance than those of SX-ACE, Xeon 6126, Tesla V100, Xeon Phi KNL 7290, respectively.

SX-Aurora TSUBASA achieves about 1.97 to 9.75 times faster than SX-ACE due to its high computational capability and high sustained memory bandwidth.

Conclusions

SX-Aurora TSUBASA has a high potential to accelerate various applications by its vector computational capability and high sustained memory bandwidth. The balance between memory performance and core performance is important to achieve high sustained performance.