An Evaluation of a Hierarchical Clustering Method

Using Quantum Annealing

Introduction - Quantum Annealing and Clustering -

v’ Digital computers (e.g. CPU, Vector Processer Unit (VPU), GPU) v Non-hierarchical clustering (like k-means)
o Multiplicity of various problems o Low computational complexity
x Performance limited by the Moore’s law x Need to know the number of clustersin advance
x Huge amounts of power consumption v' Hierarchical clustering

v/ Quantum annealing (QA) (on Quantum Processer Unit (QPU))
o Power efficient
o Specialized to Combinatorial Optimization Problems
x Limited multiplicity of some problems
-» Hybrid computing with digital computers and QA

x High computational complexity

0 No need to know the number of clustersin advance

-> Need to use the appropriate clustering method
depending on the situation

; : ; : Objective
v Hler_ar_c_hlcal cIusterlrIg using Q‘A Need to clarify features of each processor and each clustering
o Possibility of accelerating clustering method by comparing the execution time and quality of the

x Small problem size due to the limitation of qubits in QA clustering method

A Combinatorial Optimization Problem in Clustering

Hierarchical agglomerative clustering (HAC), one of the hierarchical clustering methods, using the combinatorial optimization problem of Maximum Weighted
Independent Set (MWIS) in deciding representative points of each cluster[1]
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v'How to choose representative points by MWIS
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