
• Composed of Vector Hosts (VHs) and Vector Engines (VEs) [1]
 VH: Standard x86 processor that is responsible for

executions of OS-related tasks
 VE: Vector processor that accelerates computing kernels

• 8-vector cores
• Vector registers for 256-elements data

• The benchmark solves Poisson’s equation using
the Jacobi iteration method [2]

Experimental Environment
• SX-Aurora TSUBASA A300-8

 VH: Intel Xeon Gold 6126 x 2
 Peak performance / socket: 1.0 TFLOPS
 Peak memory bandwidth: 0.13 TB/s

• The performance improves as each optimization is applied

• 1.15x performance improvement compared with that of
OpenMP version [3]

• 15% of the peak performance in the MPI version

• SX-Aurora TSUBASA achieves high performance of the Himeno benchmark by the optimizations
 Important to execute efficient vector processing with effective use of hardware resources

• Hybrid execution with VHs and VEs has the potential to achieve higher performance

Vector Computing System SX-Aurora TSUBASA

Importance of Vector Processing
• Recent CPUs improve computational performance by vector processing

 NEC SX-Aurora TSUBASA, Intel AVX-512, ARM SVE, etc.
→ The use of vector processing is necessary for accelerating programs

• Applications are executed on VEs
 Only when applications need

system calls, VEs request VHs
to execute them

Multi-Node Evaluation

Overview of the Himeno Benchmark

Three Optimizations for VE

• Jacobi iteration method
 19-point stencil calculation nested by i, j, and k
 The memory-intensive kernel (Code B/F: 3.74)

Architecture of a VE

Store highly reusable data in the LLC
 Utilize the LLC whose bandwidth is higher than that of HBM2
 An array of the pressure variables is referenced 19 times in the

kernel
 Place the array in the LLC on a priority basis

Reduce the loop overheads
 Apply loop unrolling

 The kernel has long loops with nested structures
 Use of plenty of vector registers of vector processors

• Set the unroll time as large as possible without register spilling

Tune the domain decomposition parameters
 Important for efficient vector processing

 Longer vector length
 Higher LLC hit ratio

 Keeping the length in the k direction
larger than 256, while

 Increasing the decomposition of the
j direction compared with i direction
to achieve the high LLC hit ratio

• Good scalability
 48.9x speedup and 76% parallel

efficiency with 64 processes
• 13% of the peak performance with 8VEs

• SX-Aurora TSUBASA achieves the
highest performance
 Utilize HBM2 and LLC bandwidth

efficiently

• Many applications can be calculated by using vector processing
 Large-scale numerical simulations, big data analysis, etc.

• Himeno benchmark version 3.0
 C language
 MPI static allocate version
 Problem size: XL (1024x512x512)
 Initial decomposition: (i,j,k)=(2,2,2)

 VE: Type 10B x 8
 Peak performance / node: 2.15 TFLOPS
 Peak memory bandwidth / node: 1.2 TB/s
 Peak LLC bandwidth / node: 3.2 TB/s

• Cent OS 7.5.1804
• VEOS 2.4.0
• NEC C/C++ Compiler 3.0.1
• NEC MPI 2.5.0

0

500

1000

1500

2000

2500

0 20 40 60 80 100 120 140

H
im

en
o

p
er

fo
rm

an
ce

 (G
FL

O
P

S)

Number of processes

SX-Aurora TSUBASA Xeon Skylake

EPYC Rome Xeon Phi KNL

48.9x

References
[1] Y. Yamada et al., Vector Engine Processor of NEC ’s Brand-New
Supercomputer SX-Aurora TSUBASA”, Hot Chips 30, Aug 2018
[2] Himeno benchmark, http://i.riken.jp/en/supercom/documents/himenobmt/
[3] K. Komatsu et al., Performance Evaluation of a Vector Supercomputer SX-
Aurora TSUBASA”, SC18, Nov 2018

• 2 VHs and 8 VEs
• One of VH and VEs are connected by PCI Express

 Via 2 PCIe switches
• VEs are connected by Infiniband (IB) for MPI

System Overview of A300-8

• High bandwidth Last Level Cache (LLC)

• 6-module High Bandwidth
Memory (HBM2)

Need to utilize the multiple cores and the long vector length

Need to utilize the LLC bandwidth

Need to utilize the main
memory bandwidth

core core

core core

core core

core core

LL
C

 8
M

B

LL
C

 8
M

B

HBM2
8GB

HBM2
8GB

HBM2
8GB

HBM2
8GB

HBM2
8GB

HBM2
8GB

i

j

K

1024

512

512

256

256

128

240

260

280

300

320

340

OpenMP ver. MPI ver. + LLC
utilization

+ Loop
unrolling

+ Domain
decomp tuning

H
im

en
o

p
er

fo
rm

an
ce

 (
G

FL
O

P
/s

)

Single-Node Evaluation

0

50

100

150

200

250

300

350

SX-Aurora
TSUBASA

SX-ACE Xeon
Skylake

EPYC Rome Xeon Phi
KNL

Tesla V100

H
im

en
o

 p
er

fo
rm

an
ce

 (
G

FL
O

P
S)

3.9x 4.4x 3.1x 2.4x 1.1x

i
jK

 LLC hit ratio increases from 44.3% to 49.6% by utilizing LLC
 Overhead decreases greatly by loop unrolling
 Achieve vector length of 255 by tuning the decomposition

VE0 VE1 VE2 VE3 VE4 VE5 VE6 VE7

PCIe
SW

PCIe
SW

VH VH

PCIe Gen.3 ×16

PCIe Gen.3 ×16

IB IB

IB SW

 Infiniband FDR

